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used to address a broad range of ecological
and evolutionary questions. A few recent
examples include the study of ontogenetic
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reaction norms (Arnqvist and Johansson,
1998), �uctuating asymmetry (Klingenberg
and McIntyre, 1998), and trophic morphol-
ogy (Caldecutt and Adams, 1998). There has
also been recent debate within these pages as
to the appropriate place for geometric mor-
phometrics in the context of phylogenetic
analysis (Adams and Rosenberg, 1998; Rohlf,
1998a; Swiderski et al., 1998; Zelditch and
Fink, 1998; Zeldtich et al., 1998). Much of our
theoretical understanding of this powerful
and relatively new approach to shape analy-
sis is due to work by Kendall on the geomet-
ric and statistical properties of shape spaces
de�ned by the Procrustes metric (Kendall,
1984, 1985). It is important that users of
these methods appreciate the relationship be-
tween the theoretical aspects of geometric
morphometrics and their practical applica-
tion. This report demonstrates that the ge-
ometry of sample variation resulting from
the most commonly used geometric method,
Procrustes analysis (also known as least
squares superimposition), is not the same as
the geometry of the shape space described
by Kendall. The coordinates of landmarks af-
ter the Procrustes superimposition (with unit
scaling) of a sample onto a reference lie on
the surface of a (hyper)hemisphere of unit
radius that, at that reference, approximates
the relationships between con�gurations in
Kendall’s shape space.

PRELIMINARIES

Most current geometric morphometric
methods involve analysis of the Cartesian
coordinates of con�gurations of landmarks
(points) that could serve as endpoints for
measurements used in more traditional ap-
proaches to shape analysis, such as com-
parisons of ratios of linear distances or of
angles between vectors connecting the land-
marks. The geometric methods are distin-
guished from the more traditional morpho-
metric analyses by their strictly enforced
retention of all the geometric shape infor-
mation in the landmark coordinates of each
con�guration.

Central to geometric morphometrics is the
de�nition of shape as the geometric prop-
erties of an object that are invariant to lo-
cation, orientation, and scale (Slice et al.,
1996). The constraints imposed by partition-
ing total coordinate variation into shape and

non-shape (translation, rotation, and size)
components can lead to well-de�ned topo-
logical and geometric constraints on the re-
sulting shape variation. Kendall (1984, 1985)
showed, for instance, that a speci�c metric,
Procrustes distance, leads to a shape space
for planar triangles that is isometric to (has
the same distance relationships as) the sur-
face of a two-dimensional sphere of radius
0.5. It is important that users of geometric
methods have an understanding of the struc-
ture of these spaces and their implications
for statistical analyses, because standard
linear statistical procedures should not be
applied uncritically in such non-Euclidean
spaces.

However, as shown below, the most com-
monly used procedure for removing dif-
ferences in location, scale, and orientation,
Procrustes superimposition, leads not to
coordinates in Kendall’s shape space, but to
coordinates in a space that can be represented
as the surface of a (hyper)hemisphere of ra-
dius one. In the case of planar triangles, this
space has a simple geometric relationship
to Kendall’s shape space. Furthermore, re-
cent studies (Rohlf, 1999) suggest that when
shape variation is linearized by projection
into a tangent space for the purpose of sta-
tistical analyses, projections from the hemi-
sphere of Procrustes-aligned con�gurations
provide better approximations of intershape
distances in Kendall’s shape space than do
alternative projections from Kendall’s space
itself.

KENDALL’S SHAPE SPACE AND
PROCRUSTES SUPERIMPOSITION

Kendall (1984, 1985) removed location and
size differences between sets of point coordi-
nates by centering each con�guration on the
origin and scaling each con�guration to unit
“size,” where size is de�ned as the sum of
squared, Euclidean distances from each land-
mark to the con�guration centroid. These
constraints can be expressed mathematically
as

Xt1 D 0 and tr(XXt) D 1,

whereX is a p £ k matrix of thecoordinatesof
p points in k dimensions, 1 is a p £ 1 vector of
1’s, and 0 a k £ 1 vector of 0’s. The square root
of the size measure, as de�ned here, is com-
monly called Centroid Size (Bookstein, 1991).
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Kendall then went on to account for ori-
entation by “quotienting-out” (removing dif-
ferences due to) special orthogonal rotations
(i.e., no re�ections) from the centered, scaled
con�gurations to form an equivalence class
of shapes. This was done by minimizing the
great circle distance, d , between each pair of
centered, scaled con�gurations when consid-
ered as 1 £ pk vectors:

½(¾1, ¾2) D inf
R

d(RX0
1, X0

2)

where R is a 2 £ 2 special orthogonal rotation
matrix, and the primes denote centered and
scaled matrices of landmark coordinates. In
the above equation, ½ is the Procrustes an-
gular (D great circle) distance (see below) be-
tween the two shapes, ¾1 and ¾2 and provides
a metric for their comparison. ½ has a maxi-
mal value of ¼=2 and de�nes Kendall’s shape
space, 6

p
k , for con�gurations of p points in k

dimensions, technically, a Reimannian man-
ifold of equivalence classes.

FIGURE 1. A view of Kendall’s shape space for triangles showing (a) the mapping of 2,000 random triangles
generated by the independent, normal displacement of triplets of points from the origin and (b) the mapping of 110
triangles describing the overall shape of gorilla scapulae. The north pole in both plots corresponds to an equilateral
triangle. The south pole corresponds to the re�ection of the triangle at the north pole. The equator of each sphere
corresponds to triangles with collinear vertices. Longitude is de�ned with respect to Bookstein’s (1996a) linearized
Procrustes estimates of uniform shape differences, u1 and u2.

The dimensionality of the sample space
of p points in k physical dimensions is,
of course, pk . Standardization for location,
scale, and orientation reduces the maximal
dimensionality of the variation of the data
by k, 1 and k(k ¡ 1)=2, respectively. This con-
tributes to Kendall’s (1984) result that for
k D 2, shape space is isometric to the complex
projective space, CPp¡2. In the special case of
planar triangles, 63

2 is isometric to the surface
of a two-dimensional sphere of radius 0.5.

Figure 1a shows a view of such a sphere
onto which has been mapped a sample of
2,000 random triangles (see Appendix). The
sphere, in this case, has been oriented so
that the north pole represents the shape
of an equilateral triangle. The re�ection of
this triangle maps to the south pole, and
those triangles having collinear vertices lie
along the equator. Longitude is de�ned with
respect to Bookstein’s (1996a) linearized Pro-
crustes estimates of uniform shape differ-
ences, u1 and u2. Great circle distances
between points equal the Procrustes angu-
lar distances between corresponding shapes.
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This plot also illustrates Kendall’s result that
triangles generated by independent, identi-
cally distributed, Gaussian displacement of
triplets of points from the origin will have a
uniform distribution in 63

2 (Kendall, 1985).
Figure 1b shows the same sphere, onto

which has been mapped a mixed sample
(both sexes from two subspecies) of 110 trian-
gles formed by the extremal angles of gorilla
scapulae (Taylor, 1997). This plot is consis-
tent with the important observation that for
most biologically derived material, the actual
amount of shape variation occupies a rela-
tively small patch of shape space (see also
Marcus et al., 2000).

Kendall’s development of shape theory is
based on the Procrustes metric between pairs
of con�gurations. A convergent approach,
and the one used in practical applications
of geometric morphometrics, is based on
the least-squares superimposition (Ordinary
Procrustes Analysis; OPA) of landmark con-
�gurations (Boas, 1905; Mosier, 1939; Sneath,
1967; Gower, 1975; Rohlf and Slice, 1990).
That is, given the model

X2 D ®(X1 C D)H C 1¿,

where ® is a scale factor, H is a k £ k special
orthogonal (no re�ection) rotation matrix, 1
is a p £ 1 vector of 1’s, ¿ is a 1 £ k vector
of coordinate-wise translations, and D is a
p £ k matrix of shape difference between the
two con�gurations, then the translation and
rotation parameters are computed to mini-
mize the sum of squared distances between
corresponding landmarks in the two con�g-
urations: 12 D tr(DDt).

The scale factor, ®, can be computed so
as to scale each object to a speci�c, usu-
ally unit, centroid size, as in Kendall’s work.
Such a choice for ® does not, however, min-
imize 12. That is achieved by scaling the
specimen to size cos(½), where ½ is the
angle between the two centered and aligned
con�gurations written as 1 £ pk vectors—
the Procrustes angular distance. The differ-
ence between these scalings has not always
been emphasized in morphometric literature
and software, though Goodall (1991) and
Kent (1994) make the distinction between
partial (unit centroid-size scaling) and full
(criterion-minimizing, cos(½) scaling) Pro-
crustes analyses. Scaling to unit centroid size

is the scaling used by Kendall and parallels
the approach used in other morphometric
analyses with the intent of comparing spec-
imens at a standard size, e.g., dividing mea-
surements by the cube root of body weight or
a speci�ed linear dimension (Jungers et al.,
1995).

The criterion 12 is a measure of the shape
difference between two landmark con�gura-
tions. The square root of this quantity has
also been referred to as Procrustes distance
(Bookstein, 1996b). With unit centroid-size
scaling, this formulation and the great circle
distance used by Kendall are simply related
by ½ D 2 sin¡1(1=2). These two distances,
1 and ½ , can be distinguished as Procrustes
“chord” distance and Procrustes “angular”
distance (Dryden and Mardia, 1998), respec-
tively. That convention will be followed here
when the distinction is important. Other-
wise, both will be synonymized as Procrustes
distance.

The OPA superimposition addresses pair-
wisedifferencesbetween two con�gurations.
In most practical applications, one is con-
cerned with the analysis of samples of more
than two con�gurations. In such cases, one
can �t the individual con�gurations to a
speci�ed reference con�guration or, more
reasonably (see below), compute a mean
con�guration and compare samples with
it. The latter is referred to as a General-
ized Procrustes Analysis (GPA) or a Gener-
alized Least Squares (GLS) superimposition
(Gower, 1975; Rohlf and Slice, 1990).

The simultaneous superimposition of con-
�gurations to a reference (usually the mean)
leads to the geometric properties that are
the subject of this report. With either an
OPA (�tting one con�guration to a reference)
or GPA (�tting a sample to an estimated
mean con�guration) the maximum angular
distance between centered, optimally ori-
ented shapes is ¼=2 (Kendall, 1984). With
unit centroid-size scaling, all shapes super-
imposed in this manner must lie on the
surface of a (hyper)hemisphere of unit ra-
dius and of the same dimension as Kendall’s
shape space. As in the case of Kendall’s shape
space, this hemisphere can be easily visual-
ized for planar triangles as shown in Figure 2.
Figure 2a shows the resulting distribution on
the hemisphere of the 2,000 triangles from
Figure 1a when Procrustes superimposed
onto the equilateral triangle at the north pole
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FIGURE 2. A view of the hemisphere of Procrustes-superimposed triangles showing (a) the mapping of the
2,000 random triangles from Figure 1a and (b) the mapping of the 110 gorilla scapulae from Figure 1b. Both sets
of data were �t by using an equilateral triangle (north pole) as the reference con�guration. The heavy latitudinal
line on each hemisphere corresponds to triangles with collinear vertices that map to the equators of the spheres in
Figure 1. The equator of the hemisphere corresponds to the re�ection of the equilateral triangle at the north pole.
Longitude is de�ned with respect to Bookstein’s (1996a) linearized Procrustes estimates ofuniform shapedifferences,
u1 and u2.

in the �rst �gure. Figure 2b shows the distri-
bution of the similarly superimposed gorilla
scapulae from Figure 1b.

An important distinction between the
mappings of triangles in Figures 1 and 2 is
that great circle distances between all pairs
of points correspond to Procrustes angular
distance only in Kendall’s shape space. The
great circle distance between any shape on
the superimposition hemisphere and the ref-
erence used for superimposition equals the
Procrustesangular distance between the two,
but the distance between any two other
shapes does not. This is most dramatically
illustrated by the fact that on the hemisphere
of triangles, the con�guration most differ-
ent in shape from the reference maps to the
entire equator of the hemisphere. Points on
opposite sides of this equator are separated
by a distance of ¼ on the hemisphere but
have an actual Procrustes distance of zero.
However, the hemisphere of the Procrustes-
superimposed triangles can be mapped di-
rectly to 63

2 by scaling each point on the
hemisphere by cos(½), where ½ is as de�ned
above. The equator of the hemisphere is at
the maximal angular distance of ¼=2 from

the reference and, thus, is mapped in its en-
tirety to the south pole of Kendall’s shape
space.

DISCUSSION

Kendall’s shape space and the Pro-
crustes (hyper)hemisphere are curved, non-
Euclidean spaces. Although researchers have
provided some distributional results and sta-
tistical procedures that account for the ge-
ometry of Kendall’s shape space (see Small,
1996; Dryden and Mardia, 1998), applied
morphometric analyses usually involve the
application of familiar statistical procedures
that assume, among other things, distri-
butions in a linear, Euclidean space. This
properly requires an additional linearization
step whereby data in either of these non-
Euclidean spaces are projected onto a lin-
ear subspace of the proper dimension. It
is through this step that the geometric dif-
ferences between the two spaces have the
greatest potential impact in applied morpho-
metric studies.

Rohlf (1999) considers several choices of
linearization suggested for data in both
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FIGURE 3. The geometric relationship between the Procrustes hemisphere (PH, outer arc, radius D 1.0) and
Kendall’s shape space (KSS, large inner circle, radius D 0.5) for triangles and alternative tangent-space projections.
The open triangle indicates the Procrustes reference triangle and the point used to de�ne the plane tangent to
both the PH and KSS. Dotted lines are alternative projections into the linear tangent plane. Open circles indicate
a speci�c, planar triangle either in KSS (K subscripts) or on the PH (P subscripts). Filled circles show orthogonal
(ortho subscripts) and stereographic (stereo subscript) projections of the shapes from KSS or from the PH. Note that
triangles on the PH map to the KSS when scaled by cos(½). Also, the open square symbol denotes the re�ection of
the triangle XK across the equator, de�ned with respect to the reference, of KSS. This re�ection represents a re�ection
of the triangle in physical space if, and only if, the references is an equilateral triangle. If, and only if, the reference
is an equilateral triangle, the horizontal dashed lines indicate the position of the triangles with collinear vertices in
each space. (This �gure was based, in part, on a �gure from the help �le of an earlier version of tpsRelw [Rohlf,
1998c] showing alternative superimposition scalings.)

spaces (see also Kent, 1994). Some of
these choices are illustrated for triangles
in Figure 3. For Kendall’s shape space, one
choice of linearization is an orthogonal pro-
jection of the data (XK) onto a plane (in
the case of triangles) tangent to Kendall’s
shape space (XK:ortho). However, this map-
ping is not single-valued. Points on one side
of the equator, de�ned with respect to the
tangent point, are mapped to the same point
in the plane as their mirror image across the
equator (XK:re�ect). Note that the two points
mapped to the same point in tangent space
by this projection are re�ections of each other
in Kendall’s shape space only with respect to
the equator as just de�ned. They are re�ec-
tions of each other in physical space if, and
only if, the tangent point is an equilateral tri-
angle and the equator thus represents trian-
gles with collinear vertices.

A second approach is the stereographic
projection of the points from Kendall’s shape
space onto a tangent plane (XK:stereo). Such a
projection maps points between the tangent
point and the equator, de�ned with respect to

the tangent point, to the area within a circle of
radius 1.0; maps points beyond the equator
to the plane outside of this circle; and maps
the point antipodal to the tangent point to
in�nity.

A third choice of linearization is an or-
thogonal projection of points on the Pro-
crustes hemisphere (XP) onto the tangent
plane at the reference (XP:ortho). This provides
a unique, one-to-one mapping of points to
a disk of unit radius. Note that the cos(½)-
scaling of Procrustes-superimposed trian-
gles (and only triangles) maps con�gurations
from the Procrustes hemisphere to Kendall’s
shape space exactly (XK D XP:cos(½)) (Fig. 3).

The usefulness of any of these projections
depends on how accurately Procrustes dis-
tances are preserved in the tangent space.
Rohlf (1999) found that for a variety of data
the orthogonal projection of points from the
Procrustes hemisphere more accurately ap-
proximated the true (Procrustes) shape dis-
tances than either projection from Kendall’s
shape space. Those results and the gen-
eral utility of Procrustes superimpositions
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suggest orthogonal projection from the Pro-
crustes hemisphere should be the generally
preferred linearization.

Still, for small amounts of shape varia-
tion, the methods of linearization described
above should produce similar results. For the
gorilla data, the uncentered correlation be-
tween distances in Kendall’s shape space and
the interobject distances in the orthogonal
and stereographic projections of the points
from Kendall’s shape space onto a plane tan-
gent at the sample mean is 0.999997 and
1.000000, respectively. The same value for the
orthogonal projection from the Procrustes
hemisphere onto a similarly de�ned plane is
1.000000.

Not surprisingly, distortions of the dis-
tances between objects are increased for
points away from the reference. To mini-
mize such distortions, therefore, one should
use the sample mean con�guration as the
reference for Procrustes superimposition and
as the point of tangency for any subsequent
projections (Rohlf, 1998a).

The Procrustes hemisphere and the impli-
cations of its geometry for the linearization
of shape scatter have not been recognized
in previous morphometric work—despite
the ubiquitous presence of the hemisphere
in the analysis of Procrustes-superimposed
data sets. The current discussion has focused
on shape spaces for planar triangles because
accurate and intuitive graphical represen-
tations can be provided for the results for
such data. For con�gurations of more land-
marks in two dimensions (p > 3, k D 2), the
geometric structure of the Procrustes (hy-
per)hemisphere is the same as for triangles
except for dimensionality. Similarly, the re-
lationships between various tangent-space
projections should be the same for samples
with relatively small scatters of shape vari-
ation. One noteworthy exception is that the
simple relationship between the Procrustes
hemisphere and Kendall’s shape space for
triangles does not hold for more compli-
cated (p > 3) planar con�gurations, because
the equator of the Procrustes hemisphere
would then correspond to a complex pro-
jective space of p ¡ 3 dimensions (Kendall,
1984). Thus, multiple maximally different
shapes would map to the south pole of a hy-
persphere after cos(½) scaling; that is, they
would not map to Kendall’s shape space.
For k ¸ 3, the mathematical consideration of
Kendall’s shape space is much more compli-

cated (Small, 1996), and a similarly simple
relationship between Kendall’s shape space
and the Procrustes hemisphere to that shown
for triangles is unlikely. However, for rela-
tively small amounts of shape scatter, the ob-
servations presented here should hold.

As a �nal point, note that the (hy-
per)hemispherical scatter of coordinate vari-
ation subsequent to Procrustes superimpo-
sition is an outcome of the use of Procrustes
superimposition and unit scaling. It is a
result of the superimposition and not a choice
of representation. Fortunately, linearization
by orthogonal projection of the sample onto
a plane tangent to the (hyper)hemisphere
at the reference con�guration provides
approximations to shape distances in
Kendall’s shape space as good as or bet-
ter than alternative linearizations from
Kendall’s shape space itself and is more
easily obtainable with existing morphome-
tric software. For small shape variation,
results using any of these methods should
be equivalent.

ACKNOWLEDGMENTS

The comments of F. James Rohlf and Dean C.
Adams are gratefully acknowledged. Suggestions made
by the three reviewers are most appreciated. Special
thanks to Andrea B. Taylor for providing the image �les
from which the scapula data were obtained. This work
was supported by grants BIR-9503024 and IBN-9728160
from the National Science Foundation. This paper is con-
tribution no. 1070 from the Graduate Studies in Ecology
and Evolution, State University of New York at Stony
Brook.

REFERENCES

ADAMS, D. C., AND M. S. ROSENBERG. 1998. Partial
warps, phylogeny, and ontogeny: A comment on Fink
and Zelditch (1995). Syst. Biol. 47:168–173.

ARNQVIST, G., AND F. JOHANSSON. 1998. Ontogenetic
reaction norms of predator-induced defensive mor-
phology in dragon�y larvae. Ecology 79:1847–1858.

BOAS, F. 1905. The horizontal plane of the skull and the
general problem of the comparison of variable forms.
Science 21:862–863.

BOOKSTEIN, F.L. 1991. Morphometric tools for landmark
data. Geometry and biology. Cambridge University
Press, Cambridge.

BOOKSTEIN, F. L. 1996a. Standard formula for the uni-
form shape component in landmark data. Pages 153–
168 in Advances in morphometrics (L. F. Marcus, M.
Corti, A. Loy, G. J. P. Naylor, and D. E. Slice, eds.).
Plenum, New York.

BOOKSTEIN, F. L. 1996b. Combining the tools of geo-
metric morphometrics. Pages 131–151 in Advances in
morphometrics (L. F. Marcus, M. Corti, A. Loy, G. J. P.
Naylor, and D. E. Slice, eds.). Plenum, New York.



148 SYSTEMATIC BIOLOGY VOL. 50

CALDECUTT, W. J., AND D. C. ADAMS. 1998. Morphomet-
rics of trophic osteology in the threespine stickleback,
Gasterosteus aculeatus. Copeia 1998:827–838.

DRYDEN, I. L., AND K. V. MARDIA. 1998. Statistical shape
analysis. John Wiley & Sons, New York.

GOODALL, C. R. 1991. Procrustes methods in the statis-
tical analysis of shape. J. R. Statist. Soc. B 53:285–339.

GOWER, J. C. 1975. Generalized Procrustes analysis.
Psychometrika 40:33–51.

JUNGERS , W. L., A. B. FALSETTI, AND C. E. WALL. 1995.
Shape, relative size, and size adjustments in morpho-
metrics. Yearb. Phys. Anthropol. 38:137–161.

KENDALL, D. G. 1984. Shape manifolds, procrustean
metrics, and complex projective spaces. Bull. London
Math. Soc. 16:81–121.

KENDALL, D. G. 1985. Exact distributions for shapes of
random triangles in convex sets. Adv. Appl. Prob.
17:308–329.

KENT , J. T. 1994. The complex Bingham distribution and
shape analysis. J. R. Statist. Soc. B 56:285–299.

KLINGENBERG , C. P., AND G. S. MCINTYRE. 1998. Geo-
metric morphometrics of developmental instability:
Analyzing patterns of �uctuating asymmetry with
Procrustes methods. Evolution 52:1363–1375.

MARCUS, L. F., E. HINGST-ZAHER, AND H. ZAHER. 2000.
Application of landmark morphometrics to skulls rep-
resenting the orders of living mammals. Hystrix It. J.
Mamm. 11(1):27–47.

MOSIER, C. I. 1939. Determining a simple structure when
loadings for certain tests are known. Psychometrika
4:149–162.

ROHLF, F. J. 1997. NTSYS-pc: Numerical taxonomy
and multivariate analysis system. Exeter Software,
Setauket, NY.

ROHLF, F. J. 1998a. On applications of geometric mor-
phometrics to studies of ontogeny and phylogeny.
Syst. Biol. 47:147–158.

ROHLF, F. J. 1998b. tpsTri. Dept. Ecology and Evolution,
State Univ. New York at Stony Brook.

ROHLF, F. J. 1998c. tpsRelw. Dept. Ecology and Evo-
lution, State Univ. New York at Stony Brook.

ROHLF, F. J. 1999. Shape statistics: Procrustes superim-
positions and tangent spaces. J. Classif. 16:197–223.

ROHLF, F. J. 2000. On the use of shape spaces to com-
pare morphometric methods. Hystrix It. J. Mamm.
11: 8–24.

ROHLF, F. J., AND D. E. SLICE. 1990. Extensions of the
Procrustes method for the optimal superimposition
of landmarks. Syst. Zool. 39:40–59.

SLICE, D. E. 1999. Morpheus et al.: Software for morpho-
metric research. Dept. Ecology and Evolution, State
Univ. New York at Stony Brook.

SLICE, D. E., F. L. BOOKSTEIN, L. F. MARCUS , AND F. J.
ROHLF. 1996. A glossary for geometric morphomet-
rics. Pages 531–551 in Advances in morphometrics
(L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and
D. E. Slice, eds.) Plenum, New York.

SMALL, C. G. 1996. The statistical theory of shape.
Springer, New York.

SNEATH, P. H. A. 1967. Trend-surface analysis of trans-
formation grids. J. Zool. 151:65–122.

SWIDERSKI, D. L., M. L. ZELDITCH, AND W. L. FINK. 1998.
Why morphometrics is not special: Coding quantita-
tive data for phylogenetic analysis. Syst. Biol. 47:508–
519.

TAYLOR, A. B. 1997. Scapula form and biomechanics in
gorillas. J. Hum. Evol. 33:529–553.

ZELDITCH, M. L., AND W. L. FINK . 1998. Partial warps,
phylogeny and ontogeny: A reply to Adams and
Rosenberg. Syst. Biol. 47:345–348.

ZELDITCH, M. L., W. L. FINK , D. L. SWIDERSKI, AND B. L.
LUNDRIGAN. 1998. On applications of geometric mor-
phometrics to studies of ontogeny and phylogeny: A
reply to Rohlf. Syst. Biol. 47:159–167.

Received 23 August 1999; accepted 25 January 2000
Associate Editor: R. Olmstead

APPENDIX

The geometry of the variation of Procrustes-super-
imposed triangles was �rst explored with simulated
data sets. The procedure is outlined here with spe-
ci�c reference to the Morpheus et al. (Slice, 1999) and
NTSYSpc (Rohlf, 1997) programs, but any software ca-
pable of superimposing landmarks by using Procrustes
methods, carrying out singular value decompositions
or computing principal components, and creating three-
dimensionalplots could be used. Size, scale, and orienta-
tion in the simulated data are irrelevant. The steps used
were as follows:

1. Compute the coordinates of the vertices of an equilat-
eral triangle, ABC, and of its re�ection, for example,
(0,0; 0.5,0.866; 1,0) and (0,0; 0.5,–0.866; 1,0).

2. Compute the coordinates of the vertices of six
collinear triangles—three with each vertex, A, B, and
C, half-way between the other two, respectively, for
example, (0,0; 0.5,0; 1,0), (0.5,0; 0,0; 1,0), and (0,0; 1,0;
0.5,0), and three with each pairwise combination of
vertices, AB, AC, BC, coincident, for example, (0,0;
0,0; 1,0), (0,0; 1,0; 0,0), and (1,0; 0,0; 0,0).

3. Generate a large data set, say, n D 2000, of random tri-
angles by the random, normal (N(0, ¾ )) displacement
of triplets of points from the origin. The magnitude
of ¾ affects only the “size” range of the resulting tri-
angles and, hence, has no effect on the results after
superimposition (step 5).

4. Combine the above data, in order, into an NTSYSpc
data �le.

5. Import the data �le into Morpheus et al. and su-
perimpose the data by OPA ( D LS) superimposition
(�nalLSScaling D unity, allowre�ections D false) onto
the equilateral triangle. This orients the resulting
hemisphere so the equilateral triangle is at the north
pole. The general geometric results are unchanged for
any superimposition of multiple triangles to a single
reference, whether to a speci�c con�guration or an
iteratively computed mean shape.

6. Export the superimposed con�gurations to an
NTSYSpc �le.

7. Use NTSYSpc to carry out a singular value decompo-
sition (SVD) of the data �le from step 6 with scaling
for the left vectors set to “lambda.” Except for round-
ing error, only the �rst three dimensions will have
nonzero eigenvalues. This can be checked by setting
the number of dimensions to the maximal value (for
this data set) of six. Finally, set to three the number of
dimensions to compute and save the left matrix to a
�le.

8. Import the left matrix from step 7 into Morpheus et al.
as an NTSYSpc data set consisting of numerous ob-
jects, each with a single, three-dimensional point. Use
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the “group” command to distinguish key triangles
from steps 1 and 2 above, for example, group 1 1 3 3,
and view “ALL” data to see the hemisphere and the
locations of key triangles as described in the text.

Once the hemispherical structure of the Procrustes-
superimposed random triangles was determined, the
geometric relationships between the Procrustes hemi-
sphere and Kendall’s shape space for triangles was

worked out and checked by using the key triangles from
steps 1 and 2 above. Subsequently, Rohlf developed the
program tpsTri (Rohlf, 1998b) speci�cally for visualiz-
ing the Procrustes hemisphere, Kendall’s shape space
for triangles, the tangent-plane projections, and various
other shape spaces (see Rohlf, 2000). tpsTri was used to
generate the �gures used in this report. The Morpheus
et al. and tpsTri programs are available for free down-
load from http://life.bio.sunysb.edu/morph.


