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Abstract—We examined and compared several morphometric methods for describing complex
shapes. We chose the leaves of maples (Acer) and other tree species because they can all be
visually discriminated from each other solely by leaf shape. We digitized the leaf outlines with
a video camera and then examined the outlines with several morphometric methods to deter-
mine the extent to which margin details could be quantified and compared. Elliptic Fourier
analysis provides complete and accurate descriptions of complex outlines and can be used to
reconstruct images accurately. We compared several metrics that summarize overall shape
complexity. A new measure of margin roughness is useful for quantifying and comparing
margin detail independently of overall shape. Fractal dimension is highly correlated with the
ratio of perimeter to area (dissection index) and reveals little additional information about
shape. In combination, the summaries of shape complexity provide good discrimination of
groups. We used canonical discriminant analysis to compare methods for outlines to tradi-
tional morphometric analysis of measurements taken between landmark points. Groups were
discriminated from each other more clearly with outline methods than with landmark-based
analyses. [Acer, Fourier analysis, fractal dimension, landmark analysis, leaf shape, margin
roughness, Liquidambar, morphometrics, Quercus.]

Morphology remains one of the richest
and most reliable sources of information
about systematic, evolutionary, and eco-
logical relationships. Several types of
methods have been devised for the quan-
titative analysis of shape (Rohlf, 1990b;
Rohlf and Bookstein, 1990). The majority
of effort has been directed toward tech-
niques using information about the loca-
tions of several points in an image, or
landmarks (Blackith and Reyment, 1971;
Cheverud and Richtsmeier, 1986; Book-
stein, 1989; Marcus, 1990; Rohlf, 1990b;
Rohlf and Bookstein, 1990; Rohlf and
Slice, 1990; Marcus et al, 1996). Land-
mark methods have been extended to
three dimensions (Cheverud et al., 1983;
Bookstein, 1990), and allow landmark
points to be internal as well as on the
edge of a structure. Although many
aspects of shape can be characterized by
a small number of landmark points, there
may be additional information about
form between the landmarks that is not
incorporated into landmark analyses.
Morphometric methods that use the
entire outline of objects are newer and

less well developed. Several of the
methods for outlines are appropriate only
for smooth curves or simple closed
curves without concave segments, and
are often applied only when there are no
homologous landmarks (Rohlf, 1990b).
However, the utility of outline methods is
not restricted to forms in which homolo-
gous landmarks cannot be identified.
Outline methods utilize various
methods of curve fitting that are sensitive
to curvature (Rohlf, 1990a, 1990b). Fourier
analysis can be applied both to simple
ovals such as skulls (Lestrel and Roche,
1986), insect wings (Rohlf and Archie,
1984), and mussel shells (Ferson et al,
1985), and to the more complicated and
irregular outlines of leaves (Kincaid and
Schneider, 1983; McLellan, 1993; Premoli,
1996) and insect genitalia (Liu et al.,
1996). Eigenshape analysis (Lohmann,
1983), mathematically related to Fourier
analysis (Rohlf, 1986), can be applied to
closed contours of simple shapes (Kores
et al, 1993). Moment invariants are
another method for analysis of curves
that has been applied to leaf shapes
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(White et al., 1988; Lonn and Prentice,
1990).

Many biological structures, such as
sutures between bones and the teeth on
leaves, vary in fine detail, but the quanti-
tative characterization of the smallest
scales of resolution has not been well
developed. Fourier analysis can describe
small aspects of shape (Kincaid and Sch-
neider, 1983), but has not been used
extensively. Chain code descriptors,
which assess the change in direction in
an outline at the level of individual pixels
(Pavlidis, 1978), have been tested with
leaf outlines and found to be poor at dis-
tinguishing taxa (White et al., 1988).

Leaf shape presents a more complex
problem in morphometrics than skulls,
jaws, and insect wings, as leaf shapes
come in a wide variety of shapes, which
vary in overall proportions of length and
breadth, the extent of cutting between
lobes, and in the size and shape of teeth
along the margins. Few landmarks can be
designated on leaves that are not lobed.
Pseudolandmarks, or points on an
outline that are designated geometrically,
make the wuse of landmark-based
methods feasible on images without
homologous points (Dickinson et al,
1987; Kores et al., 1993). Hybrid methods
using both landmarks to define parts of
curves and analysis of specified parts of
outlines have been developed as appro-
priate for application to some leaves

TABLE 1. Species and sources of leaf collections.

(Ray, 1992), thereby maximizing the
available information.

Many morphometric methods have
been developed and characterized one at
a time (e.g., Kincaid and Schneider, 1983;
Dickinson et al, 1987; Bookstein, 1989;
Rohlf and Slice, 1990; Slice, 1993);
there have been few studies that made
empirical comparisons of alternative
approaches (White et al., 1988; McAlar-
ney, 1995). There is now a wide choice of
methods available, but it can be difficult
to determine the relative merits of the
various approaches for a specific applica-
tion. Moreover, arguments in the liter-

ature have been contentious (e.g.,
Bookstein et al.,, 1982; Read and Lestrel,
1986; Bookstein, 1987; Lele and

Richtsmeier, 1990; Crowe, 1994). Here
we demonstrate empirically that many
morphometric methods yield similar
results in distinguishing the shapes of
leaves from some well-known taxa.

MATERIALS AND METHODS
Collections and Image Acquisition

Ten leaves were collected from each of
10 trees in 12 species, consisting of 9
maple species, Acer (one with two
populations), 2 oaks, Quercus, and sweet-
gum, Liquidambar styraciflua (Table 1).
These species were chosen for compari-
son of methods for shape analysis
because they can be distinguished from

Species Locality Source Light

Acer ginnala Maxim. Univ. of Toronto campus cultivated part sun
Acer palmatum Thunberg Mount Pleasant Cemetery, Toronto cultivated part sun

ex. Murray
Acer pensylvanicum L. Brevard, Transylvania Co, NC wild closed forest
Acer platanoides L. Univ. of Toronto campus cultivated full sun
Acer pseudoplatanus L. Mount Pleasant Cemetery, Toronto cultivated part sun
Acer rubrum L. (Coastal) Trenton, Jones Co., NC wild sparse forest
Acer rubrum L. (Montane) Brevard, Transylvania Co., NC wild closed forest
Acer saccharum var. floridanum Chapel Hill, NC wild forest edge

(Chapman) Desmarais
Acer saccharinum L. College Park, MD wild forest edge
Acer spicatum Lamarck Randolph, NH wild closed forest
Liquidambar styraciflua L. Trenton, Jones Co., NC wild sparse forest
Quercus alba L. Chapel Hill, NC wild forest edge
Quercus palustris Muench. College Park, MD cultivated forest edge
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each other on the basis of leaf shape
alone (Fig. 1). Leaves of these species
provide a wide range of variation in
several aspécts of shape, with differences
in the numbers of lobes, in the degree of
lobing, in the shape of sinuses and
apices, and in the size and number of
teeth on the margins (Fig. 1).

Fully expanded leaves were collected
from mature trees from within 2 m of the
ground, with an effort to collect leaves
within each population that had the same
exposure to sunlight. Leaves were then
pressed and dried before digitization.

Outlines were recorded using a video
camera and the program MorphoSys
(Meacham and Duncan, 1991) in the
Botany Department of the Royal Ontario
Museum, Canada. The height of the
camera was adjusted for each group of
leaves so that the frame was nearly filled
by the extreme points on the leaf. The
resolution of the video image was

Acer ginnala Acer palmatum Acer pensylvanicum
Amur Maple
Acer rubrum Acer rubrum
Red Maple (coastal) Red Maple {montane)
Acer spicatum Liquidambar styraciflua
Striped Maple Sweetgum

Japanese Maple Mountain Maple . Norway Maple

512 x 480 pixels. MorphoSys records out-
lines as four-step chain codes, and allows
manual designation of landmarks and the
designation of measurements to be taken
between points.

We used three categories of morpho-
metric methods: Fourier analysis, several -
single-parameter metrics of shape
(including fractal dimension, dissection
index, margin roughness, perimeter/
length ratio, and the number of points in
the outline), and traditional mor-
phometric multivariate analysis of linear
measurements. The resolution of the
various methods was compared as the
ability to discriminate groups with
canonical discriminant analysis. Except
for the commercially available Fractal-D,
the computer programs for calculating
the descriptors were written in Turbo
Pascal version 3.0, and are available from
the authors upon request. Statistical
analyses were performed with SAS (SAS

Acer platanoides Acer pseudoplatanoides

Sycamore Maple

Acer saccharinum Acer saccharum

Silver Maple Sugar Maple

Quercus alba Quercus palustris
White Oak Pin Oak

FIGURE 1. Outlines of representative leaves of the species examined in this study.
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Institute, 1985) and NTSYS-PC (Rohlf,
1993).

Outline Methods: Fourier Analysis

Fourier analysis is a mathematical way
of reducing complex curves into their
component spatial frequencies. It pro-
vides a precise and accurate description
of shape over a range of size scales (Kuhl
and Giardina, 1982; Kincaid and Schnei-
der, 1983). Fourier analysis therefore
seems appropriate for the analysis of out-
lines such as leaf shapes in which there is
a periodic repetition of parts, as well as
variation in shape over a range of size
scales. The coefficients of the lower order
Fourier harmonics correspond to the
overall shape, and the higher order har-
monics correspond to smaller details of
the outline (Kuhl and Giardina, 1982;
Kincaid and Schneider, 1983).

We chose elliptic Fourier analysis
(Kuhl and Giardina, 1982) because a pre-
vious comparison of Fourier methods
(Rohlf and Archie, 1984) showed that it
produced reasonable results with bio-
logical shapes, and, unlike some other
Fourier methods for closed contours, it
can cope with shapes that include many
concave segments. We performed elliptic
Fourier analysis on the digitized leaf out-
lines with a program written to utilize xy
coordinates, rather than chain codes,
starting at the first point in each image at
the juncture of the petiole and lamina.
First, chain code files were translated into
xy coordinates. We used every fourth
point in the outlines, due to computer
memory limitations. Four coefficients are
produced for each harmonic. We normal-
ized the coefficients to the first harmonic
to remove differences in size and orienta-
tion according to a method given by Kuhl
and Giardina (1982). We calculated the
power series of the normalized Fourier
coefficients by squaring each coefficient,
summing the two components for each x
and each y, and then taking the square
root of each sum, resulting in two coeffi-
cients for each harmonic, rather than
four.

The asymmetry of images and other
information about shape is reduced with
the power series of the Fourier coeffi-
cients. However, some of that informa-
tion may not be informative in making
comparisons of shape, particularly in this
data set. Simple images with clearly bilat-
eral symmetry may be aligned to have
the same major axis (Rohlf and Archie,
1984), but alignment is not so straightfor-
ward with leaves because the several
lobes may occur at different angles from
each other.

The elliptical Fourier coefficients for 64
harmonics were calculated for each leaf,
and we used the means of each coeffi-
cient for 10 leaves from each of 130 trees
in multivariate statistical analyses.
During the analysis, the number of har-
monics employed was varied in order to
evaluate the number of harmonics neces-
sary for discrimination of taxa, and was
in some instances limited by the capac-
ities of the programs. We used canonical
discriminant analysis to compare the dis-
crimination of groups based on elliptic
Fourier coefficients that had been nor-
malized only with the power series of the
normalized coefficients. Power series of
coefficients from 4, 8, 16, and 32 harmo-
nics were also compared to evaluate the
importance of the number of harmonics
in discrimination of groups. Previous
studies with Fourier analysis of shapes
have shown that larger numbers of har-
monics can provide greater resolution of
groups (Kincaid and Schneider, 1983;
Mou and Stoermer, 1992).

Principal component analysis is fre-
quently used to evaluate Fourier coeffi-
cients when groups are not known a
priori (Rohlf and Archie, 1984; McLellan,
1993; Liu et al.,, 1996). We employed prin-
cipal component analysis (SAS Institute,
1985) based on correlation matrices of the
coefficients to examine the extent to
which groups were defined by this
method, and subsequently used the
values of the first two principal com-
ponents as variables in comparisons with
other metrics of leaf shape.

We reconstructed the leaf outlines
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from raw Fourier coefficients using the
same number of points as in the original
image, to assess the aspects of shape that
different numbers of Fourier harmonics
describe. We estimated the goodness of
fit between the original image and the
reconstruction (referred to as the Fourier
error, e;) by summing the distances
between each point of the original image
and the closest point of an image recon-
structed from Fourier coefficients for 1 to
64 harmonics, according to

k
e, = % i;l \/(xi -1+ (y; —s)?

where x; and y; are the ith x and y coordi-
nates in the original image, r; and s; are
the ith coordinates in the reconstructed
image, and k is the number of points in
the outline. The points in the recon-
structed image (r;, s;) are those that have
the shortest distance to the matching (x;,
y;) points. The (r;, s;) points are found
by measuring the Euclidean distance
between each original outline point (x;,
y;) and all points on the reconstructed
outline (r;, s) from j=(I—-20) to
j = +20), and using the point (j) with
the least distance to the given (x;, ;). The
smaller the e;, the better the fit to the
data, and the units of e, are millimeters.
We log-transformed e; for parametric
statistical tests. We analyzed the results
of Fourier errors for 4, 8, 16, 32, and 64
harmonics in detail and examined corre-
lations with other measures of outline
complexity (see later discussion).

Single-Parameter Shape Descriptors

Several single-parameter descriptors
were calculated for outline data for 100
leaves within each species. Each of them
summarizes some aspect of shape into a
single metric, making statistical compari-
sons straightforward. The disadvantage
of one-parameter measures is that they
do not provide unique descriptions of
shape; they are not information preser-
ving (Pavlidis, 1980). However, if each
measure is sensitive to a different aspect
of shape, then their use in combination

might facilitate discrimination of groups.
To examine the ability of these metrics to
discriminate among the species, discrimi-
nant analysis and canonical discriminant
analysis were used on all of the single-
number descriptors, as well as principal
components 1 and 2 from the analysis of
the power series of Fourier coefficients
for 16 harmonics. The single-parameter
measures we used were fractal dimen-
sion, dissection index, margin roughness,
perimeter/length ratio, and the number
of points in the outline.

The fractal dimension characterizes
complex lines with values between one
and two (Mandelbrot, 1982; Vicek and
Cheung, 1986; Slice, 1993) and can serve
as a measure of complexity or scale of
shape. It is based on the use of fractal
geometry, which is characterized by self-
similarity of structure or complexity of an
image at all scales (Mandelbrot, 1982;
Barnsley, 1988; Peitgen et al, 1992). It
seems appropriate for leaves to apply
fractal geometry, because the structure of
fine scale details can resemble the larger
scale aspects of leaf shape (Lindenmayer,
1977; McLellan and Dengler, 1995), thus
showing self-similarity. Fractal dimension
is not itself a measure of self-similarity,
but should correspond to the degree of
complexity of an image, based on the
assumption of self-similarity.

We calculated fractal dimension using
the program Fractal-D (Slice, 1993), pro-
vided by Dennis Slice. The program
requires the designation of the sizes of
measurements taken from outlines, and
we used the file leaf2.stp provided with
the program. We tested the bptions for
standardization of the images and rando-
mization of the starting point. Stan-
dardization of the size of the images
resulted in slightly lower values for non-
standardized images than for images
standardized to the same size. Randomi-
zation of the starting point of the images
made no difference to the values of
fractal dimension, compared to using the
same starting point for all images. Values
reported here are for calculations based
on standardized images, in which the
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outline always started at the same point,
at the juncture of the petiole and leaf
blade, and measuring clockwise.

The dissection index is the ratio of an
outline’s perimeter to the square root of
its area, standardized so that a circle has
a value of 1.0 (Kincaid and Schneider,
1983; McLellan, 1993). This dimensionless
number gives a simple measure of the
degree to which an outline is more
complex than a circle.

We devised a new measure called
margin roughness to measure small
changes in direction of an outline.
Margin roughness is similar to chain
code descriptors that examine the fre-
quency of angles between adjacent points
as an indication of fine-scale fluctuation
of an outline (Pavlidis, 1978). The absol-
ute values of angles between lines
defined by sequential pairs of points, P
(Fig. 2), are determined, summed, and
averaged over all pairs of points, then
corrected for the average that would have
been found for a circle with the same
number of points, according to

1 i=k-2 A2
=7 Y. |arctan (@) - 180|
i=1 | i
_ 30
k

where
_ (P;iP;y1)? + (P 1Py 3)? — (PiPyy )P
2(P;P; 1 )(P;s1P; 4 2)

Video-digitized images consist of
points in pixels that are adjacent to each
other in an array of squares, and there-
fore they can be rougher than the actual
outline. In addition, the roughness of a
digitized line will depend on its direction

FIGURE 2. Measurement of margin roughness,
determined by the sum of angles between lines
defined by adjacent points.

relative to the rectangular digitizing grid.
A vertical or horizontal line has no
changes in angles, while a straight,
diagonal line consists of 90° steps. As a
compromise between the roughness of a
video-digitized image and the resolution
of margin detail, lines were defined by
pairs of points separated by four inter-
vening points on the outline.

We selected the distance between
points at the tip of the major lobe and the
largest sinus on one side of each leaf as a
measure of length of part of the leaf (Fig.
3). The length of the perimeter of the
outline between these two points was
divided by the linear length to yield the
perimeter/length ratio, and the values were
log-transformed for statistical analysis.
This is a measure of the shape complex-
ity that incorporates information from
part of the outline; low values corre-
spond to smooth curves, and higher
values should correspond to more com-
plicated margins. An additional single
parameter was the total number of points
in each image. If each image fills the
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FIGURE 3. Measurements taken for measure of
ratio of perimeter to length for one part of the
outline. The straight line is the linear distance
between points at the tip of the major lobe and at
the major sinus. The perimeter of the outline
between these points was measured, and the ratio
of the two was used.
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video frame, then the number of points
should correspond to the complexity of
the shape.

Traditional Landmark Methods

We took linear measurements between
10 landmark points on each leaf at the
tips of lobes, bases of sinuses, and the
juncture of the petiole and lamina. Four
sets of measurements were compared
with each other. One included all 20 mea-
surements, and three sets consisted of 9
measurements each: one in the direction
of radial growth, one mostly orthogonal
to the direction of growth, and a third in
a pattern of a truss, where measurements
were taken between adjacent points on
the outline, and pairs separated by one
other point (Strauss and Bookstein, 1982)
(Fig. 4). Means of the two values of mea-
surements taken from both sides of a leaf
were used. Each of the four data sets was
subjected to Burnaby’s transformation
(Rohlf and Bookstein, 1987) using

NTSYS-PC (Rohlf, 1993), in which prin-
cipal component 1 is used to make an
orthogonal projection of the data matrix
to control for differences in size, so that
comparisons of shape can be made inde-
pendently of differences in size.

Comparisons of Methods

The single-number metrics were com-
pared with analysis of variance between
trees within species and between species.
The three types of morphometric
methods were compared using canonical
discriminant analysis (CDA) and dis-
criminant function analysis (DFA), fol-
lowing comparisons made by White et al.
(1988). CDA is one type of ordination
technique for characterizing predetermi-
ned groups of individuals. The between-
group variance is maximized relative to
that within groups, thus emphasizing
those descriptors that best discriminate
among samples. A plot of the sample
positions on the first two canonical axes

FIGURE 4. Linear measurements. (a) Full set of 20 measurements, (b) radial measurements, (c) measure-
ments that are orthogonal to the radial direction of growth, and (d) truss pattern of measurements.
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gives the best two-dimensional projection
of the differences between groups. Wilks’
lambda provides a test for the signifi-
cance of differences between groups;
small values correspond to highly signifi-
cant differences. The percent misclassifi-
cation found by discriminant analysis
provides another indication of the
resolution of the methods (White et al,,
1988).

REsULTS
Fourier Analysis

We calculated normalized elliptic
Fourier coefficients and the power series
of normalized Fourier coefficients for
each leaf, and then used mean values of
coefficients for the 10 leaves from each
tree in subsequent analyses. We com-
pared the coefficients of the first 16
Fourier harmonics using canonical dis-
criminant analysis and principal com-
ponent analysis. The definition of groups
with the first two canonical variates is
somewhat different with the power series
of normalized coefficients and with nor-
malized coefficients alone (Fig. 5). With
the power series, the two species of
Quercus cluster together, and Acer plata-
noides forms a group distinct from other
species, -while these groups overlap
others with the normalized coefficients.
Though all values of Wilks’ lambda are
very small and highly significant, the
values are lower for the power series
than for normalized coefficients, and the
power series produced greater discrimi-
" nation among groups (Table 2). Even
though the number of variables, or
descriptors, is halved by taking the

power series, the discrimination of
groups is improved. An increase in the
number of harmonics ought to provide
additional information for shape com-
parisons, because additional harmonics
describe the shape more completely
(Kuhl and Giardina, 1982; Kincaid and
Schneider, 1983). Canonical discriminant
analysis based on 4, 8, 16, and 32 harmo-
nics of the power series of Fourier coeffi-
cients showed greater discrimination of
groups with more harmonics (Table 2).
Thirty-two harmonics resulted in 100%
correct classification, and 16 harmonics
provided 99% correct classification by
discriminant analysis.

The most common application of
Fourier analysis for finding groups of
shapes involves subjecting the coeffi-
cients to principal component analysis of
the coefficients (Rohlf and Archie, 1984).
A few of the known groups, A. palmatum,
A. saccharinum, and L. styraciflua, are dis-
tinct from each other in the plot of the
first two principal components (Fig. 6)
based on the power series of Fourier
coefficients for 16 harmonics. Although
principal component 1 (PC1) accounts for
40.8% of the total variation, it appears to
contribute little to the discrimination
among groups.

The eigenvectors and the reconstruc-
tions of images from Fourier coefficients
together provide a way of interpreting
the aspects of shape to which multi-
variate analysis of Fourier coefficients is
sensitive. The eigenvectors of the first
two principal components for both the x
and y components of the Fourier coeffi-
cients demonstrate the relative contribu-
tions of the harmonics to these principal

TABLE 2. Comparison of Fourier descriptors of shape.

Fourier coefficients

Normalized Power series of normalized
Number of harmonics 16 4 8 16 32
Number of descriptors 60 6 14 30 62
Number of significant axes 6 4 5 5 5
Wilks’ lambda 0.00000020 0.00067079 0.00000154 0.00000001 0.00000000
Correct assignment (%) 96 83 95 929 100
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FIGURE 5. (a) Canonical variates. Large open
circles = Acer ginnala; large solid squares = Acer
palmatum; dashes = Acer pensylvanicum; open
triangles = Acer platanoides; solid triangles = Acer
pseudoplatanus; small solid circles = Acer rubrum
(montane); large open squares =Acer rubrum
(coastal); small open squares = Acer saccharinum;
large stars = Acer saccharum var. floridanum; small

stars = Acer spicatum; small solid squares =
Liquidambar  styraciflua; large solid circles =
Quercus alba; small open circles = Quercus

palustris. (a) Normalized elliptic Fourier coefficients.
Canonical variate 1 accounts for 30% of the varia-
tion, and canonical variate 2 accounts for 23%. (b)
Power series of normalized elliptic Fourier coeffi-
cients. Canonical variate 1 accounts for 35% of the
variation, and canonical variate 2 accounts for 23%.

components (Fig. 7). PC1 is largely
accounted for by harmonics 5 and higher
for both the x and y components, and
PC2 has a large contribution from the
first and second harmonics, and lesser
contributions from harmonics 8, 9, and 10
for the x component and 12, 13, and 14 for
the y component.

Reconstructions of images from differ-
ent numbers of harmonics show that a
small number of harmonics correspond
to the major lobes of the leaves (Fig. 8).
Acer saccharum and A. saccharinum both

V] 5 10
PC1 (40.8%)

FIGURE 6. Plot of the first two principal com-
ponents (PC) based on the power series of normal-
ized elliptic Fourier coefficients. Means of the
Fourier coefficients of 10 leaves in each tree were
used in the principal component. analysis. For
symbol definitions, see Fig. 5. ’

have leaves with five lobes. In A.
saccharum, there are a median lobe and
two secondary lobes of nearly the same
size, while in A. saccharinum the median
lobe is larger than the flanking secondary
lobes. In both species, the smallest pair of
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FIGURE 7. Eigenvectors of the first 20 Fourier
harmonics based on the power series of normalized
elliptic Fourier coefficients. X and Y are the x
and y coefficients, respectively, of each Fourier
harmonic. (a) Principal component 1. (b) Principal
component 2.
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4 8 16

Number of Harmonics

32 64

Original

Images

FIGURE 8. Reconstructions of images from different numbers of Fourier harmonics. (Top) Acer
saccharinum, (middle) Acer saccharum, and (bottom) Acer palmatum.

lobes occurs near the base of the leaf.
Reconstructions of the images based on
four harmonics for these two species
show the difference between them in the
relative sizes of the median and second-
ary lobes. Leaves of A. palmatum usually
have seven lobes, including a median
lobe and a pair of secondary lobes of
nearly the same size that flank it.
Another two (paired) smaller lobes are
located distal to the secondary lobes, and
there is a much smaller pair at the base
of the leaf. Reconstructions based on four
harmonics of the image of a leaf of A. pal-
matum do not resemble the leaf closely;
there are three looped points and two
square corners. However, this shape is
distinctly different from those of A. sac-
charum and A. saccharinum. With eight
harmonics, each of the reconstructions of
these species resembles the major
pattern of lobes. With additional harmo-
nics the reconstructions are closer to the
original images. However, sharp angles
at sinuses of A. saccharinum are not
reconstructed with complete accuracy
even with 64 harmonics.

We estimated the error of fit (e))
between original images and reconstruc-

tions from Fourier coefficients based on
harmonics 1 to 64. To make reconstruc-
tions that fit the original images equally
well, more complicated shapes should
require a greater number of harmonics
than simpler shapes. Therefore, a
measure of the error of fit between the
two might provide an indication of the
general complexity of the shape. The
plots of e, for each species are similar in
shape, with a rapid decline from one up
to about 10 or 15 harmonics, and a slow
decrease after about 20 harmonics (Fig.
9). Those species with high values of e,
for a small number of harmonics also
have high values for many harmonics.
There is little additional improvement to
the fit between reconstructions and orig-
inal images with more than about 20 har-
monics, as can be seen in the
reconstructions based on 32 and 64 har-
monics (Fig. 8).

Single -Parameter Shape Descriptors

The single-parameter shape descrip-
tors are similar to each other in their dis-
tributions (Fig. 10). There are many cases
in which mean values differ significantly
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FIGURE 9. Error of fit between original digitized image and reconstruction from Fourier coefficients for 1
to 32 harmonics. Points represent means of the Fourier fit for each of 10 trees in a species. For symbol

definitions, see Fig. 5.

among species, but the entire ranges of
values in the samples of 100 leaves for
each species overlap among several
species. In defining characters in system-
atics, the range of variation within each
taxon is important (Stevens, 1991), just as
significant differences among means are
important.

Values of fractal dimension ranged from
1.066 to 1.401. The lowest values were
found in A. spicatum, A. pensylvanicum,
and A. pseudoplatanus, which are the
least incised and have the fewest
lobes of the leaves considered here.
Highest values were found in A.
palmatum, with a large number of lobes,
and A. saccharinum, which is deeply
incised. The values of fractal dimension
produced some nonoverlapping groups,
but the broad range within each species,
particularly the two Quercus and
Liquidambar, precludes clear discrimi-
nation of species or groups of species
using the entire range of values (Fig. 10).

The values of the dissection index
ranged from 4.28 to 11.99 (Fig. 10). The
lowest values were found in A. pseudo-
platanus and the coastal population of A.
rubrum, while the highest values were
found in A. palmatum and A. saccharinum,
as with fractal dimension.

Margin roughness ranged from 12.12 to
39.62 degrees (Fig. 10). The lowest values
were found for the two Quercus species,
A. saccharum, and A. platanoides, all of
which have smooth margins. The highest
values were found for the montane popu-
lation of A. rubrum, A. spicatum, and A.
pensylvanicum, all of which have teeth of
moderate size (Fig. 1). The latter two,
which can be visually distinguished from
each other by the size and number of
teeth, are not separable by values of
margin roughness. Although L. styraciflua
has numerous small teeth on the
margins, margin roughness is fairly low
with a mean of 19.81 degrees. These
small teeth are below the resolution of
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shape complexity for 100 leaves of each species. 1, Acer ginnala, 2, A. palmatum, 3, A. pensylvanicum, 4, A.
platanoides, 5, A. pseudoplatanoides, 6, A. rubrum (coastal), 7, A. rubrum (montane), 8, A. saccharinum, 9, A.
saccharum var. floridanum, 10, A. spicatum, 11, Liquidambar styraciflua, 12, Quercus alba, and 13, Q. palustris.
(a) Dissection index, (b) fractal dimension, (c) margin roughness, (d) perimeter/length, (e) number of points,
(f) Fourier error of fit with four harmonics, and (g) Fourier error of fit with 64 harmonics.

the digitized image and the calculations
based on lines defined by every fifth
point.

The perimeter/length ratio ranged in
value from 0.018 to 0.781 (Fig. 10). This
measure should be close to 1.0, and
therefore have log-transformed values
approaching zero, when there is a
straight margin between the two points,
and have higher values when the margin
is more complicated. The highest mean
values were found in A. saccharinum and
the two Quercus, while the lowest values
occurred in leaves from L. styraciflua.

The number of points in' the outline
ranged from 1,188 to 4,364, and was
greatest in A. palmatum and A.
saccharinum, and lowest in A. rubrum
(coastal), A. ginnala, and A. spicatum.

The error of fit for four Fourier harmo-
nics should correspond with overall
large-scale shape, since that is what is
apparent in images reconstructed with
the first four harmonics (Fig. 7). Leaves
that are more deeply incised, A. palmatum
and A. saccharinum, have the highest
mean values of ¢, (Fig. 10). Intermediate
mean values and wide overall range were
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found for the two Quercus and L.
styraciflua, while the remainder of the
maples had lower values. This pattern is
similar to that found for fractal dimen-
sion and dissection index.

- The Fourier error for 64 harmonics
could correspond to the smaller scale
aspects of shape, since many harmonics
are necessary to fully describe the details
of margins. Acer palmatum and A. sacchar-
inum had the highest mean values, as
they did for dissection index, fractal
dimension, and Fourier error with four
harmonics. Each species has a broad
range of values relative to the range of all
species (Fig. 10). This pattern might have
resulted from sensitivity to small differ-
ences specific to each image, rather than
to aspects of shape that are found in all
100 leaves from a species.

Each of the single-parameter descrip-
tors showed highly significant differences
among species and among trees within
species (Table 3). Higher values of
F correspond to greater ability to
discriminate among species. Dissection
index, margin roughness, and Fourier
error for four harmonics have the
highest F values for the comparisons both
among species and among trees within
species. Perimeter/length ratio and
Fourier error for 64 harmonics have the
lowest values for comparisons of trees
within species, and perimeter/length
ratio, the number of points in the outline,
and the second principal component of
the PCA of Fourier coefficients have the

lowest values for comparisons between
species. Therefore, these descriptors
might provide less information to dis-
criminate among groups.

There are many statistically significant
and positive correlations between the
shape measures, with the exception of
margin roughness and PC2 of Fourier
coefficients (Table 4, Fig. 11). Margin
roughness varies independently of the
other metrics, except for fractal dimen-
sion, Fourier error for four harmonics,
and PC1, with which it is negatively
correlated. Plotted against each other,
fractal dimension and margin roughness
together show three groupings of species
(Fig. 11). Acer palmatum and A. sacchar-
inum have moderate values of margin
roughness and high values of fractal
dimension. Quercus alba, Q. palustris, L.
styraciflua, A. saccharum and A. plata-
noides have low values of margin rough-
ness and a range of values of fractal
dimension, while the others have rela-
tively low values of fractal dimension and
high margin roughness.

Fractal dimension and dissection index
are highly positively correlated with each
other in the shapes included in this study
(Fig. 11), and both are highly correlated
with the Fourier errors for 4 and 64 har-
monics and the number of points. The
estimation of fractal dimension involves
measuring perimeter using ever-
decreasing steps, and thus it is not sur-
prising that its estimate is highly
correlated with a measure of the ratio of

TABLE 3. Analysis of variance of single-number descriptors.

Species Trees within species
Effect df F P< df F P<
Dissection index 12 122245 0.0001 116 18.92 0.0001
Fractal dimension 12 525.64 0.0001 116 7.11 0.0001
Margin roughness 12 1310.51 0.0001 117 12.41 0.0001
Perimeter/length 12 215.92 0.0001 116 7.77 0.0001
Number of points 12 195.53 0.0001 117 5.84 0.0001
Fourier error 4 12 1356.37 0.0001 116 12.21 0.0001
Fourier error 64 12 964.60 0.0001 116 3.95 0.0001
PC1° 12 602.65 0.0001 117 9.69 0.0001
PC2° 12 203.69 0.0001 117 3.17 0.0001

¢ PC1 and PC2 are the first and second principal components from the PCA of Fourier coefficients.
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TABLE 4. Correlations among measures of complexity. Means of values for 10 leaves in each of 130 trees

were used.
Dissection = Margin  Perimeter/ Number
index  roughness  length  of points Error4 Error64 PC1® PC2°
Fractal dimension 0.916 —0.317 0.215 0.718 0.946 0.820 0936 —0.059
*kkk * %k * skokokok kK% *kkk *kkk n.s.
Dissection index —0.054 0.276 0.766 0.861 0.849 0.871 —-0.117
ns. ok o rk ok ok ok ns.
Margin roughness —0.193 —0.034 0467 —0119 —-0426 -—0.003
* n.s. Hhxk n.s. *kkok n.s.
Perimeter/length 0.168 0.099 0.316 0.252 0.604
n.s. h_s. *kk *% skokokok
Number of points 0.649 0.538 0.768 —0.136
Kok kk *okk ek Kk n.s.
Error 4 0.767 0.927 —0.165
ok Ak ns.
Error 64 0.767 0.074
Kk kk n.s.
PC1 0.005
ns.

® Associated probabilities: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s., not significant.
® PC1 and PC2 are the first two principal components of analysis of the power series of 16 elliptic Fourier

harmonics.

perimeter to area. The estimation of
fractal dimension depends on the use of
appropriate step files (Slice, 1993) and
can vary greatly with the resolution of the
image. Our attempts at utilizing this
program with hand-digitized images,
consisting of 200-300 points rather than
the several thousand points in video digi-
tized images, resulted in negative values
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for fractal dimension, which cannot be
correct. The ratio of area to perimeter can
also vary with image resolution, but does
not depend on as many assumptions as
fractal dimension, thus making it a less
error-prone measure. It seems likely that
the high correlations between fractal
dimension, dissection index, Fourier
error for four harmonics, and PC1 are
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FIGURE 11. - Fractal dimension plots. (a) Margin roughness. (b) Dissection index. Points represent mean
values for 10 leaves from each of 130 trees. For symbol definitions, see Fig. 5.
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due to measurement of similar aspects of
shape. If this is the case, then dissection
index would be the most efficient to use,
because its calculation is the simplest of
these metrics.

Traditional Landmark Methods

Four sets of linear measurements were
transformed according to the method of
Burnaby (Rohlf and Bookstein, 1987). The
transformed data sets were then sub-
jected to canonical discriminant analysis.
The radial and orthogonal data sets have
similar discriminating power, while the
data set of 20 measurements and the
truss data set were better at discrimi-
nating the species (Table 5). However,
none of the sets of measurements is as
good at discriminating groups as either
Fourier coefficients or the single number
metrics.

DiscussION

"Our analyses demonstrate greater dis-
crimination among groups with morpho-
metric methods that utilize outline
information than with methods utilizing
measurements between a few points.
However, the difference in discrimination
is not large, and none of the methods
showed great superiority over the others.
In the sample of leaf shape considered
here, there is variation in the shape and
complexity of outlines between landmark
points, so it is not surprising that the

TABLE 5. Comparisons of descriptors of shape.

inclusion of outlines improves discrimi-
nation among groups.

Most of the single-number descriptors
are highly correlated with each other and
appear to correspond to large-scale dif-
ferences in shape. Some, such as margin
roughness, vary independently of most of
the others, and therefore must be sensi-
tive to other aspects of shape. Together,
these descriptors provide as much infor-
mation about discrimination of groups as
large numbers of Fourier harmonics.
Fractal dimension does not reveal infor-
mation in a novel way when compared to
other measures of shape complexity, and
its usefulness in comparing leaf shapes
has been questioned previously (Vlcek
and Cheung, 1986). Fractal analysis of
leaf shapes might be developed in a
useful way if a measure could be devel-
oped that would estimate the the degree
of self-similarity in a biological image.
Many fractal models of plants mimic
development, and thus may provide a
way of comparing shapes that corre-
sponds to the ways they develop
(Barnsley, 1988; Prusinkiewicz and Lin-
denmayer, 1990; Gould et al., 1992).

Resolution of images by digitization
may pose a limitation for some applica-
tions. Video digitizing is rapid, but the
resolution of an ordinary video camera is
lower than hand digitizing. Some of the
margin details, especially in sweetgum,
were not apparent in the data analysis.
Recording the outlines with higher
resolution, or magnifying part of the

Outlines

Landmarks (linear measures)

Single parameter
measures with

Single-parameter

measures PC1 and PC2* 20 Radial Orthogonal Trusses
Number of 7 9 20 9 9 9
descriptors
Number of 4 4 4 4 4 4
significant axes
Wilks’s lambda 0.00005174 0.00000502 0.00000014  0.00002494 0.00007070 0.00003545
Correct 93 100 95 86 86 94

assignment (%)

* PC1 and PC2 are the first and second principal components from the PCA of Fourier coefficients.
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outline for digitization, could save these
details. There are prospects for greater
resolution with automated digitizing
using scanners (Molvray et al., 1993).

We have shown that the power series
of Fourier coefficients provided better
discrimination of groups in this sample of
leaves than coefficients that were normal-
ized only. Information about shape is lost
when the power series is used, and
images cannot be  reconstructed.
However, at least some of that informa-
tion is not valuable in making compari-
sons of shapes in this sample. Simple
images may be aligned to have the same
major axis, and the amplitude of Fourier
coefficients, even without normalization,
may be highly informative. For instance,
Liu et al. (1996) used raw Fourier coeffi-
cients on images of standard size and
alignment of the posterior lobe of the
male genital arch of Drosophila. PC1
accounted for 80% of the variation in this
sample. However, complex leaf shapes
present a more complicated problem of
alignment of numerous lobes, and the
power series of Fourier coefficients can
improve discrimination of groups.

Shape analysis methods may be infor-
mation preserving or not (Pavlidis, 1980);
it may or may not be possible to recon-
struct the image from some part of the
analysis. There is an attraction to
information-preserving methods, in that
it is clear that they have captured all
aspects of shape in the images. There is
also a necessity for information-
preserving methods when the application
is visual recognition of images, as in the
detection of tanks and airplanes by
robots (Kuhl and Giardina, 1982) or iden-
tification of weeds (Franz et al., 1991;
Woebbecke et al., 1995). However, sensi-
tivity to every aspect of shape, especially
when shape is complicated, may be
neither feasible nor desirable.

The individual leaf shape traits that
can be used to discriminate among
species did not appear in any of the
methods in our analyses, perhaps
because many other aspects of leaf shape
are included in addition to the diagnostic

ones. Leaves that are easily identified
visually were not always easily discrimi-
nated by many methods. Traditional tax-
onomic descriptions of leaves involve
separate terms for overall shape, the
shapes of the base and the tip, the extent
of incision, and the size and shape of
teeth on the margin (Stearn, 1983;
Radford et al, 1985), and species are
often distinguished on the basis of some,
but not all, of these aspects of shape. The
U- and V-shaped sinuses of A. saccharum
and A. rubrum, respectively, are good
traits to discriminate between these
species, but form a small part of overall
shapes that are similar to each other.
Many of the analyses shown here do not
separate these species from each other
because all parts of the outlines are
equally weighted, whereas human
pattern recognition can concentrate on
specific components of an object. Much
as aspects of shape are considered inde-
pendently of each other in the verbal
descriptions of leaf shape (Radford et al.,
1985; Stearn, 1983), the use of several
measures of shape may be practical for
finding traits that distinguish species.

ACKNOWLEDGMENTS

We thank D. Slice for the fractal program and
advice, C. S. Campbell for collecting A. spicatum,
and T. A. Dickinson for the use of video system and
MorphoSys. Support was provided by NSERC
grants to N. G. Dengler and T. A. Dickinson and by
a grant from the Mellon Foundation to the Uni-
versity of the Witwatersrand.

REFERENCES

BARNSLEY, M. 1988. Fractals everywhere. Academic
Press, San Diego.

BLAckITH, R. E.,, AND R. A. REYMENT. 1971. Multi-
variate morphometrics. Academic Press, New
York.

BoOOKSTEIN, F. L. 1987. Describing a craniofacial
anomaly: Finite elements and the biometrics of
landmark location. Am. J. Phys. Anthropol.
74:495-509.

BOOKSTEIN, F. L. 1989. Principal warps: Thinplate
splines and the decomposition of deformations.
IEEE Trans. Pattern Anal. Mach. Intell. USA
11:567-585.

BoOKSTEIN, F. L. 1990. Introduction to methods for
landmark data. Pages 215-225 in Proceedings of
the Michigan Morphometrics Workshop (F. J.



280

SYSTEMATIC BIOLOGY

voL. 47

Rohlf and F. L. Bookstein, eds.). Special Pub-
lication 2, University of Michigan Museum of
Zoology, Ann Arbor.

BOOKSTEIN, F. L., B. CHERNOFF, R. ELDER, ]J. HuM-
PHRIES, G. SMITH, AND R. STRAUSS. 1982. A
comment of the uses of Fourier analysis in sys-
tematics. Syst. Zool. 31:85-92.

CHEVERUD, J., J. LEwis, J. BACHRACH, AND W. LEw.
1983. The measurement of form and variation in
form: An application of three-dimensional quan-
titative morphology by finite-element methods.
Am. J. Phys. Anthropol. 62:151-165.

CHEVERUD, J., AND J. RICHTSMEIER. 1986. Finite-
element scaling applied to sexual dimorphism in
rhesus macaque (Macaca mulatta) facial growth.
Syst. Zool. 35:381-399.

CrOwWE, T. M. 1994. Morphometrics, phylogenetic
models and cladistics: Means to an end or much
ado about nothing? Cladistics 10:77-84.

DickiNsON, T. A, W. H. PARKER, AND R. E.
STRAUSS. 1987. Another approach to leaf shape
comparisons. Taxon 36:1-20.

FERSON, S., F. J. RoHLF, AND R. K. KOEHN. 1985.
Measuring shape variation of two-dimensional
outlines. Syst. Zool. 34:59-68.

FrRANZ, E.,, M. R. GEBHARDT, AND K. B. UNKLESBAY.
1991. Shape description of completely visible and
partially occluded leaves for identifying plants in
digital images. Trans. Am. Soc. Agric. Engin.
34:673-681.

GouLp, K. S., J. P. W. YOUNG, AND E. G. CUTTER.
1992. L-System analysis of compound leaf devel-
opment in Pisum sativum L. Ann. Bot. 70:189-196.

KiNcAID, D. T., AND R. B. SCHNEIDER. 1983. Quanti-
fication of leaf shape with a microcomputer and
Fourier transform. Can. J. Bot. 61:2333-2342.

KORES, P. J., M. MOLVRAY, AND S. P. DARWIN. 1993.
Morphometric variation in three species of Cyr-
tostylis (Orchidaceae). Syst. Bot. 18:274-282.

Kuni, F. P, AND C. R. GIARDINA. 1982. Elliptic
Fourier features of a closed contour. Comput.
Graph. Image Proc. 18:236-258.

LELE, S., AND J. T. RICHTSMEIER. 1990. Statistical
models in morphometrics: Are they realistic?
Syst. Zool. 39:60-69.

LESTREL, P. E., AND A. F. ROCHE. 1986. Cranial base
shape variation with age: A longitudinal study of
shape using Fourier analysis. Hum. Biol. 58:527-
540.

LINDENMAYER, A. 1977. Paracladial relationships in
leaves. Ber. Dtsch. Bot. Ges. Bd. 90:287-301.

Ly, ], J. M. MERCER, L. F. StaMm, G. C. GIBSON,
Z.-B. ZENG, AND C. C. LAURIE. 1996. Genetic
analysis of a morphological shape difference in
the male genitalia of Drosophila simulans and D.
mauritiana . Genetics 142:1129-1145.

LoHMANN, G. P. 1983. Eigenshape analysis of
microfossils: A general morphometric procedure
for describing changes in shape. Math. Geol.
15:659-672.

LoNN, M. AND H. C. PRENTICE. 1990. Mosaic
variation in Swedish Petrorhagia  prolifera
(Caryophyllaceae): The partitioning of morpho-

metric and electrophoretic diversity. Biol. J. Linn.
Soc. 41:353-373.

MANDELBROT, B. B. 1982. The fractal geometry of
nature. Freeman, New York.

MaRrcus, L. 1990. Traditional morphometrics. Pages
77-122 in Proceedings of the Michigan Morpho-
metrics Workshop (F. J. Rohlf and F. L. Bookstein,
eds.). Special Publication 2, University of Michi-
gan Museum of Zoology, Ann Arbor.

Marcus, L. F, M. CorTy, A. Loy, G. J. P. NAYLOR,
AND D. E. SLICE. 1996. Advances in morpho-
metrics. Plenum Press, New York.

MCALARNEY, M. E. 1995. Use of the boundary
element method for biological morphometrics. J.
Biomech. 28:609-616.

McLELLAN, T. 1993. The roles of heterochrony and
heteroblasty in the diversification of leaf shapes
in Begonia dregei (Begoniaceae). Am. J. Bot.
80:796-804.

McLELLAN, T., AND N. G. DENGLER. 1995. Pattern
and form in repeated elements in the develop-
ment of simple leaves of Begonia dregei. Int. J.
Plant Sci. 156:581-589.

MeacHAM, C. A, AND T. DUNCAN. 1991. Mor-
phoSys. Regents of the Univ. of California,
Berkeley.

MOLVRAY, M., P. KORES, AND S. DARWIN. 1993.
Inexpensive digital data-acquisition for morpho-
metric study. Taxon 42:393-397.

Mou, D, AND E. F. STOERMER. 1992. Separating
Tabellaria (Bacillariophyceae) shape groups based
on Fourier descriptors. J. Phycol. 28:386-395.

PavLIDIS, T. 1978. A review of algorithms for shape
analysis. Comput. Graph. Image Process. 7:243-
258.

PavLiDIs, T. 1980. Algorithms for shape analysis of
contours and waveforms. IEEE Trans. Patt. Anal.
Mach. Intell. 2:301312.

PEITGEN, H.-J,, H. JURGENS, AND D. SAUPE. 1992.
Chaos and fractals: New frontiers of science.
Springer-Verlag, New York.

PREMOLI, A. C. 1996. Leaf architecture of South
American Nothofagus (Nothofagaceae) using tradi-
tional and new methods in morphometrics. Bot. J.
Linn. Soc. 121:25-40.

PRUSINKIEWICZ, P., AND A. LINDENMAYER. 1990.
The algorithmic beauty of plants. Springer-
Verlag, New York.

RADFORD, A. E., W. C. DICKISON, J. R MASSEY, AND
S. R. BELL. 1985. Vascular plant systematics.
Harper and Row, New York.

RAY, T. 1992. Landmark eigenshape analysis:
Homologous contours: Leaf shape in Syngonium.
Am. J. Bot. 79:69-76.

ReAD, D. W., AND P. E. LESTREL. 1986. Comment on
the uses of homologous point measures in sys-
tematics: A reply to Bookstein et al. Syst. Zool.
35:241-253.

RoHLE, F. J. 1986. The relationship among eigen-
shape analysis, Fourier analysis, and the analysis
of coordinates. Math. Geol. 18:845-854.

ROHLEF, F. J. 1990a. Fitting curves to outlines. Pages
167-177 in Proceedings of the Michigan Morpho-



1998

MCcLELLAN AND ENDLER—SHAPE OF COMPLEX OBJECTS

281

metrics Workshop (F. J. Rohlf and F. L. Bookstein,
eds). Special Publication 2, University of Michi-
gan Museum of Zoology, Ann Arbor.

RoHLF, F. J. 1990b. Morphometrics. Annu. Rev. Ecol.
Syst. 21:299-316.

RoHLF, F. J. 1993. NTSYS-pc. Numerical taxonomy
and multivariate analysis system. Exeter Soft-
ware, Setauket, New York.

ROHLEF, F. J.,, AND J. W. ARCHIE. 1984. A comparison
of Fourier methods for the description of wing
shape in mosquitoes (Diptera: Culicidae). Syst.
Zool. 33:302-317.

ROHLE, F. J., AND F. L. BOOKSTEIN. 1987. A comment
on shearing as a method for “size correction.”
Syst. Zool. 36:356-367.

RoHLF, F. J, aAnD F. L. BOOKSTEIN. 1990. Pro-
ceedings of the Michigan Morphometrics Work-
shop. Special Publication Number 2, University of
Michigan Museum of Zoology, Ann Arbor.

RoOHLEF, F. J.,, AND D. SLICE. 1990. Extensions of the
Procrustes methods for the optimal superim-
position of landmarks. Syst. Zool. 39:40-59.

SAS INSTITUTE. 1985. SAS/STAT guide for personal
computers, version 6. SAS Institute, Cary, North
Carolina.

SLICE, D. E. 1993. Fractal analysis of shape. Pages
164-190 in Contributions to morphometrics (L. F.
Marcus, E. Bello and A. Garcia-Valdecasa, eds.).
Museo Nacional de Ciencias Naturales, Madrid.

STEARN, W. T. 1983. Botanical Latin, 3rd edition.
London:David and Charles.

STEVENS, P. F. 1991. Character states, morphological
variations, and phylogenetic analysis: A review.
Syst. Bot. 16:553-583.

STrRAUSS, R. E.,, AND F. L. BOOKSTEIN. 1982. The
truss: Body form reconstruction in morpho-
metrics. Syst. Zool. 31:113-135.

VLCEK, J., AND E. CHEUNG. 1986. Fractal analysis of
leaf shapes. Can. J. For. Res. 16:124-127.

WHITE, R. ]J.,, H. C. PRENTICE, AND T. VERWIJST.
1988. Automated image acquisition and morpho-
metric description. Can. J. Bot. 14:612-623.

WOEBBECKE, D. M., G. E. MEYER, K. VON BARGEN,
AND D. A. MORTENSEN. 1995. Shape features for
identifying young weeds using image analysis.
Trans. Am. Soc. Agric. Engin. 38:271-281.

Received 16 January 1997; accepted 15 May 1997
Associate Editor: P. Mabee



